Hamilton cycles in regular 3-connected graphs

نویسندگان

  • Yongjin Zhu
  • Hao Li
چکیده

This result is best possible for k = 3 since the Petersen graph is a nonhamiltonian, 2-connected, 3-regular graph on 10 vertices. It is essentially best possible for k > 4 since there exist non-hamiltonian, 2-connected, kregular graphs on 3k + 4 vertices for k even, and 3k + 5 vertices for all k. Examples of such graphs are given in [ 1, 3 1. The problem of determining the values of k for which all 2-connected, k-regular graphs on n vertices are hamiltonian was first suggested by G. Szekeres. Erdijs and Hobbs [ 3 ] proved that such graphs are hamiltonian if n < 2k + ck”*, where c is a positive constant. Subsequently, Bollobas and Hobbs [ 1 ] showed that G is hamiltonian if n < +k. We shall in fact prove a result slightly stronger than Theorem 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

On the Number of Hamilton Cycles in Bounded Degree Graphs

The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs – deriving thereby extremal bounds. We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276), improving on Eppstein’s previous bound. The resulting new upper bound of O(1.276) for the maximum number of Hamilton cycles in 3-regul...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Hamilton Cycles in Restricted and Incomplete Rotator Graphs

The nodes of a rotator graph are the permutations of n, and an arc is directed from u to v if the first r symbols of u can be rotated one position to the left to obtain v. Restricted rotator graphs restrict the allowable rotations to r ∈ R for some R ⊆ {2, 3, . . . , n}. Incomplete rotator graphs only include nodes whose final symbol is i ≤ m for a fixed maximum value m ∈ {1, 2, . . . , n}. Res...

متن کامل

Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs

We describe an algorithm which enumerates all Hamilton cycles of a given 3regular n-vertex graph in time O(1.276n), improving on Eppstein’s previous bound. The resulting new upper bound of O(1.276n) for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Ω(1.259n). Our method differs from Eppstein’s in that he considers in each step a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 29  شماره 

صفحات  -

تاریخ انتشار 1980